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Abstract

Maximum satisfiability (Max-SAT) is more general
and more difficult to solve than satisfiability (SAT).
In this paper, we first investigate the effectiveness of
Walksat, one of the best local search algorithms de-
signed for SAT, on Max-SAT. We show that Walksat
is also effective on Max-SAT, while its effectiveness
degrades as the problem is more constrained. We
then develop a novel method that exploits the back-
bone information in the local minima from Walk-
sat and applies the backbone information in differ-
ent ways to improve the performance of the Walk-
sat algorithm. We call our new algorithm backbone
guided Walksat (BGWalksat). On large random SAT
and Max-SAT problems as well as instances from the
SATLIB, BGWalksat significantly improves Walk-
sat’s performance.

1 Introduction
Satisfiability or SAT is an archetypical combinatorial problem.
A SAT involves a set of Boolean variables and a set of clauses
in the form of a disjunction of literals (variables or their nega-
tions). A clause is satisfied if one of its literals is set to true,
and the problem is satisfied if all clauses are satisfied. The
problem is to decide if a variable assignment exists that sat-
isfies all the clauses. When not all clauses are satisfiable, the
goal is to maximize the satisfied clauses, and the problem be-
comes maximum SAT or Max-SAT, an optimization problem. A
SAT (Max-SAT) with

�
literals per clause is denoted as k-SAT

(Max-k-SAT). It is known that k-SAT with
�

greater than two is
NP-complete and Max-k-SAT with

�
being at least two is NP-

hard [7]. Max-SAT is more general and difficult to solve than
SAT. Many real-world problems, such as scheduling, pattern
recognition, and multi-agent cooperation and coordination [3;
6], can be formulated and solved as SAT or Max-SAT.

Recent years have witnessed significant progress made on
SAT and Max-SAT along two directions. The first is the un-
derstanding of properties such as phase transitions and back-
bones [2; 12; 13; 17; 19]. Phase transitions refer to dramatic
changes in a problem property when a critical parameter of
a problem changes. The most important phase transition re-
sults on random 3-SAT are that when the ratio of the number�
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of clauses to the number of variables (C/V ratio) increases be-
yond a critical value, around 4.3, random 3-SATs begin to be-
come unsatisfiable, and the computational cost of the problem
increases abruptly [2; 12; 13]. The backbone of a problem is a
set of variables that have fixed values in all optimal solutions
to the problem. The hardness of a SAT or Max-SAT is deter-
mined by the backbone size of the problem [13]. In addition,
the backbones of random SAT and Max-SAT also have small
to large phase transitions [19]. The second direction is focused
on developing efficient SAT solvers. The most noticeable re-
sults along this line are the Walksat local search algorithm [16]
and its variants [11], which are among the best SAT solvers
used in practice for problems such as planning.

A problem of fundamental interest and practical importance
in algorithm design is how to utilize problem structure proper-
ties such as phase transitions and backbones to cope with high
complexity and improve algorithm performance. The current
research on this problem is limited. [15] developed a trans-
formation method to exploit phase transitions of tree search.
[5] designed a method to incorporate estimated backbone vari-
ables in a systematic search for SAT. [18] proposed a heuristic
backbone sampling method for generating initial assignments
for a local search using an estimated backbone. This sampling
scheme will also be studied in this research.

In this paper, we develop a novel method to exploit the struc-
ture of local minima reached by an effective local search algo-
rithm, and an effective approach to utilize the structure infor-
mation to improve the performance of a local search algorithm.
We focus on Max-SAT in this research.

To develop our new method, we first study the performance
of Walksat, which was designed for SAT, on Max-SAT (Sec-
tion 3). We show that Walksat is effective on random Max-
SAT, finding many high quality local minima close to optimal.
In addition, the local minima reached by Walksat appear to
form large clusters around optimal solutions. Our results also
show that the performance of Walksat degrades when the con-
strainedness of Max-SAT increases. Although we carry out
this analysis for the purpose of developing a new method, the
result is of interest and significance on its own. To our knowl-
edge, Walksat has only been analyzed on some overconstrained
Steiner tree problems [10].

The main contribution of this paper is an innovative method
that exploits the solution structure of a combinatorial problem
to improve the performance of a local search algorithm such
as Walksat (Section 4). It was inspired by the recent research
on phase transitions and backbones of SAT and Max-SAT [13;



19] and the performance results of Walksat in the first part
of the paper. We directly apply the new method to Walksat.
Nevertheless, the ideas and techniques developed here are gen-
eral and applicable to other combinatorial problems and local
search algorithms.

Briefly, our main ideas are to use backbone information to
make biased moves in a local search, and use local minima
to approximate optimal solutions for extracting backbone in-
formation. The frequencies of literals appearing in all local
minima are called pseudo-backbone frequencies. Our new ap-
proach applies pseudo-backbone frequencies as a heuristic for
selecting a variable to flip in each step of the Walksat algo-
rithm. Such biased moves guide the search toward regions
possibly having optimal solutions. The effectiveness of this
method is partially due to the effectiveness of Walksat on find-
ing optimal and high quality approximate solutions. We call
the resulting algorithm backbone guided Walksat or BGWalk-
sat. We demonstrate and evaluate experimentally the effective-
ness of BGWalksat on large random Max-SAT instances and
real problems from SATLIB [9] (Section 5).

2 The Walksat Algorithm
Walksat is a randomized algorithm. It starts by creating an
initial random variable assignment (which we call assignment
generation). It then repeatedly makes a move by selecting a
variable and flipping its value from True’ to False or vice versa,
until it finds a satisfying assignment or reaches a predefined
maximal number of flips. Each such attempt is called a try or
restart. The procedure repeats until a maximal number of tries
has been executed.

To select a variable, the effect of flipping a variable is as-
sessed. Flipping a variable may make some unsatisfied clauses
satisfied. The number of clauses being made unsatisfied by
flipping a variable is call the break-count of the variable at the
current assignment. Walksat attempts to flip a variable with
zero break-count, trying not to make the next assignment worse
than the current. To find a variable with zero break-count,
Walksat first selects an unsatisfied clause � , randomly, from all
unsatisfied clauses. This is called clause pick. If � has a vari-
able of zero break-count, Walksat then picks such a variable,
randomly, from the ones that qualify. If no zero break-count
variable exists in � , Walksat then makes a random choice.
With probability � it chooses, randomly, a variable from the
ones involved in � (called noise pick); and with probability��� � it picks a variable with the least break-count, breaking
the tie arbitrarily if multiple choices exist (called greedy pick).

A flow chart of one try of Walksat is in Figure 1. The four
shaded rectangles contain the random choices we will analyze.
Walksat takes three parameters to run, the number of tries, the
maximal number of flips in each try or cutoff parameter, and a
probability or noise ratio for noise pick.

3 Performance of Walksat
We now turn to the effectiveness of Walksat on Max-SAT, par-
ticularly Max-3-SAT. We measure a local minimum in two
ways. The first is the cost difference between a local mini-
mum and an optimal solution (which may have non-zero cost).
The second measure is the Hamming distance between a local
minimum and the optimal solution nearest to it. We introduce
the nearest Hamming distance to capture the minimal number
of flips required to turn a local minimum into an optimal so-
lution. Furthermore, to make these two quality measures on

pick a variable of least break-
count in C (greedy pick - GP)

initial assignment generation (AG)

pick a unsatisfied clause C
(clause pick - CP)

exist a variable in C with
zero break-count?

pick a variable of 
zero break-count in C

flip a coin
1-p p

yes
no

pick a variable in C
(noise pick - NP)

Figure 1: Main operations in a try of Walksat.

two Max-SAT instances of different sizes comparable, we nor-
malize them. For a given problem, we divide the Hamming
distance by the number of variables, resulting in the Hamming
distance per variable, and divide the cost difference by the
number of clauses, giving the cost difference per clause. We
then use these two normalized quality measures to construct
the landscape of local minima reached by Walksat.

To find the nearest optimal assignment, all optimal solu-
tions are required, which are found by an extended DPLL al-
gorithm [4] for SAT. Since finding all optimal solutions is ex-
pensive, we restricted ourselves to relatively small Max-SAT
problems. In our experiments, we used problems of 100 vari-
ables and C/V ratios of 2.0, 4.3, 6.0 and 8.0 to capture prob-
lems in different constrainedness regions. The problems were
randomly generated by uniformly picking three literals with-
out replacement for a clause, discarding duplicate clauses. For
Walksat, we set the noise ratio at 0.5, the number of tries per
problem at 100, and the cutoff parameter at 10,000. We gener-
ated 1,000 problems at each C/V ratio.

The quality of local minima from Walksat are summarized
in Figure 2. The X-Y planes show the correlation between the
normalized Hamming distance and the normalized cost differ-
ence. The origins of the figures correspond to global minima.
Each point on the X-Y plane represents a possible local mini-
mum that may be visited by Walksat. The vertical Z axis mea-
sures the number of local minima reached by Walksat, aver-
aged over 1,000 instances on each of which 100 tries were run.

As shown in Figures 2(a) and (b), Walksat performs well on
underconstrained and critically constrained problems, in that
it can find global minima very often. This is shown by the
points on Z axes indicated by the arrows in the figures. There-
fore, Walksat is effective at finding optimal solutions on un-
derconstrained and critically constrained problems. However,
the number of local minima which are also global minima de-
creases from 66,677 to 8,616, on average, as the C/V ratio
increases from 2.0 to 4.3, indicating that the effectiveness of
Walksat decreases. This number decreases further to 201 and 0
on overconstrained problems with C/V ratios equal to 6.0 and
8.0 (Figures 2(c) and (d)). This result indicates that Walksat
becomes less effective in finding optimal solutions as problem
constraints increase.

The distribution of local minima of Walksat exhibits a bell
surface on overconstrained problems (Figures 2(c) and (d)).
More importantly, the summit of such a bell surface shifts away
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Figure 2: Landscape of local minima from Walksat.

from optimal solutions, the (0,0) point on the X-Y plane, as the
problems are more constrained. As the C/V ratio increases, the
number of optimal solutions decreases [19], which can become
indistinguishable from a large number of suboptimal solutions.
As a result, the search space becomes rugged, with more local
minima in which Walksat may be trapped.

Despite the difficulty of overconstrained problems, Walksat
is still fairly effective in that it is able to reach local minima
close to optimal solutions. For a C/V ratio of 8.0 (Figure 2(d)),
for instance, a large number of local minima landed on by
Walksat (the peak point of the bell surface) have a normalized
cost difference to optimal solutions of 0.014 for 100 variable
problems, which is equivalent to approximately eleven more
constraints violated than an optimal solution on such overcon-
strained problems. Since Walksat is normally executed in mul-
tiple tries, the best local minimum it can reach is usually much
better than such most frequent local minima.

A closer examination of the results in Figures 2(c) and (d)
indicates a nearly linear correlation between the cost differ-
ence and the Hamming distance. This observation implies that
a local minimum with a small cost is more likely to share a
larger common structure with an optimal solution. A similar
phenomenon on the Traveling Salesman Problem was called
the “big valley” [1]. We will exploit this in our new search
algorithm described in the next section.

4 Backbone Guided Local Search
4.1 The main idea
If all optimal solutions to a problem were known, they could
provide a useful clue to how a variable should be set. For ex-
ample, if a variable is a part of the backbone, i.e., it has a fixed
value in all optimal solutions, obviously the variable should be
set to that value. In fact, we can extend the concept of back-
bone to backbone frequency. The frequency of a variable-value
pair (or literal in SAT) in all optimal solutions is an indication
of how often the variable should take that particular value. This
can be exploited as a heuristic for selecting variables and val-
ues in a local search such as Walksat. In general, a variable-
value pair will be less likely to be swapped out of the current
state if it has a higher backbone frequency than another pair.

Unfortunately, exact backbone frequencies are hard to come
by without finding at least one optimal solution. The idea to
bypass this problem was inspired by the effectiveness of high
performance local search algorithms, such as Walksat. Our
analysis on the performance of Walksat (Section 3) showed
that Walksat can find optimal solutions very often on under-
constrained and critically constrained Max-SAT, and can also
reach near optimal solutions very close to the optimal. Such
near optimal local minima also form large clusters around op-
timal solutions. Thus, the local minima of Walksat must have
common structures, which may also be shared by optimal so-
lutions. Therefore, we can use the local minima as if they were
optimal solutions to compute pseudo-backbone frequencies as
an estimation of the true backbone frequencies. We call this
general approach backbone guided local search or BGLS.

The above ideas can be applied to almost all local search
algorithms. However, actual application is problem and algo-
rithm specific, since local search algorithms operate very dif-
ferently on different problems. In this research, we consider
Max-SAT and the Walksat algorithm.

4.2 Backbone guided Walksat: BGWalksat
The application of BGLS to Max-SAT and Walksat leads to
the backbone guided Walksat (BGWalksat) algorithm. Similar
to Walksat, BGWalksat runs a total � tries. In addition, BG-
Walksat splits the total of � tries into two phases. The first,
estimation phase, runs �
	 tries of original Walksat to collect
local minima and compute pseudo-backbone frequencies (see
Section 4.3). The second, backbone guided search phase runs
������ � � 	 tries, in which variable selection is guided
by pseudo-backbone frequencies. The newly discovered local
minima can also be added to the pool of all local minima to
update the pseudo-backbone frequencies.

We now consider backbone guided moves or biased moves.
As discussed in Section 2 and shown in Figure 1, Walksat
makes five uniformly random choices. The first is the ran-
dom initial assignment generation. Instead of uniformly ran-
domly choosing a variable and setting it to an arbitrary value,
we can view the pseudo-backbone frequencies as an approxi-
mate probability distribution of variable assignments and take
samples of variable assignments as initial assignments from
this distribution. This scheme was called heuristic backbone
sampling in [18].

The second random choice in Walksat is the random clause
pick for choosing an unsatisfied clause. To apply the idea of
backbone frequencies, we extend it to the concept of pseudo-
backbone clause frequencies, which measure the frequencies
that clauses are satisfied in all local minima. When picking a
clause from the set of unsatisfied clauses, we choose one based
on its pseudo-backbone clause frequency. For example, given
three unsatisfied clauses � 	�� ��� and ��� with pseudo-backbone
frequencies ��� � � ��� ��� and ��� � � , respectively, we choose � 	
with probability ��� ��������� � �!��� ���"����� � �$# %��� & , �'� with proba-
bility ��� ���$����� �()��� � and � � with probability ��� � �������*�+)��� � .

The remaining three random choices involved selecting a
variable, uniformly, from a particular set. The first choice picks
a variable from the set of zero break-count variables in the cho-
sen clause � (the unshaded rectangle in Figure 1), the second
directly from the variables involved in � , and the third from
the set of variables in � with the least break-count. Rather
than picking one variable uniformly from a particular set, we
make a biased selection based on variables’ pseudo-backbone



frequencies. Consider an example of three literals , 	-�/. ,0� and
,0� in the chosen clause � with backbone frequencies ��� � � ��� �
and ��� & , respectively. We want to flip , 	 more than , � because
literal . ,"	 appears more often than . , � in all local minima
(frequency 0.9 versus 0.4). Therefore, we pick , 	 , . ,0� and ,0�
with frequencies ��� 1�������� 12�3���54 �3��� 6�#2%��� 67� � ���*4$�-8�� �9%��� �$�
and ��� 6:�-8:� �(;���*8 , respectively.
4.3 Pseudo-backbone frequencies
The performance of backbone guided local search depends
largely upon the quality of pseudo-backbone frequencies.
There are at least two ways to compute pseudo-backbone fre-
quencies. The first and simplest method is to consider all the
available local minima as if they were global optima, and take
the frequency of a variable-value pair <=>�?,"@ �BA @C# that ap-
pears in all local minima D as its pseudo-backbone frequency.
Specifically, we have frequency �E��<C#FHGJI-KMLMN$O�P Q?N$KML � ��R DSR . We
call this method average counting.

It is imperative to note that not all local minima are of
equal quality. A lower quality local minimum usually con-
tains less backbone variables than one of a higher quality.
Therefore, the former is less reliable and should contribute
less to the pseudo-backbone frequencies than the latter. Thus,
we must discount the contribution of a local minimum based
on its cost. If a local minimum T @ has cost U @ , we can
compute the pseudo-backbone frequency of <VW��,X@ �BA @Y# as
�E��<C#VZ� G I�K L N$O�P Q[N$K L � ��U\@�#/�:� G I-K L N$O � ��U]@C# . In other words,
the pseudo-backbone frequency of < is reciprocally weighted
by the costs of the local minima that < was involved with. We
call this method cost reciprocal average counting.
4.4 Walksat and BGWalksat with Dynamic Noise
One limitation of the Walksat family of algorithms is their
dependence on a manually set noise parameter. So far, two
mechanisms have been proposed to resolve this issue in SAT.
Auto-Waksat [14] uses a preliminary probing stage to estimate
the optimal value for the noise parameter, while Walksat with
dynamic noise [8] automatically adjusts the noise level as the
search progresses. We have successfully combined our method
with the dynamic noise strategy, for SAT and Max-SAT.

The idea of dynamic noise is simple: start search with the
noise parameter equal to zero, and examine the number of vi-
olations in the current state every ^`_-a flips, where a is the
number of clauses in the instance. If the number of violations
has not decreased since the last time we checked ( b flips ago),
the search is assumed to have stagnated, and the noise level is
increased to cF�d�;� �S� cF�"#e_gf , where cF� is the current noise
level. Otherwise, the noise level is decreased to cF� � cF�!_g8hf .
The discrepancy between the formulas for increasing and de-
creasing the noise level are based on the observations of how
Walksat behaves when the noise parameter is too high, com-
pared with how it behaves when the parameter is too low [8].
Following [8], we have set ^i � ��& and fjk���*8 , which have
been found to be effective over a wide range of SAT and Max-
SAT instances.

Dynamic noise was designed and tested with Walksat’s cut-
off parameter set to infinity; i.e., no random restarts. This is
the setting we use for Walksat with dynamic noise for all of
our experiments in the next section. Unfortunately, this setting
is incompatible with backbone guided Walksat, which requires
random restarts in order to construct the pseudo-backbone. To
overcome this, we have devised “compromise” parameter set-
tings, which allow dynamic noise to function effectively, while

still constructing the pseudo-backbone. Specifically, we run
Walksat with dynamic noise for 30 short runs to construct the
pseudo-backbone, followed by 7 long runs of backbone guided
local search, each of which is 10 times as long as a short run.

5 Experimental Results
We now analyze the performance of BGWalksat on Max-
SAT. The benchmark suite for empirical evaluation consists
of two different types of problems: randomly generated prob-
lems and problems converted from real-world applications in
SATLIB [9]. We included satisfiable and unsatisfiable prob-
lem instances. We used Walksat implementation from Henry
Kautz and developed BGWalksat on top of it.

5.1 Random ensembles
In these experiments, we investigate the effects of biased
moves on random choices in Walksat (Section 2). There are
five places where Walksat makes uniformly random choices
(the five rectangles in Figure 1). Our experimental results
showed that the biased random choice of picking a variable of
zero break-count in a selected clause � (the unshaded rectan-
gle in Figure 1) has almost no effect. The reason is that when a
zero break-count variable exists, there is usually one available,
meaning that a very few such biased moves occur. We will not
consider this biased random choice in the rest of the paper.

In our experiments, we generated random MAX-3-SAT in-
stances with 2,000 variables and three different C/V ratios of
2.0, 4.3 and 8.0. We generated 100 instances for each of the
C/V ratios. We also tested various noise ratios, from 0 to 0.9
with an increment of 0.1, as well as Walksat with dynamic
noise. Each run, regardless of its configuration, was allowed
a total of one million flips.

For Walksat with static noise, the cutoff parameter was set
to 10,000 flips (so the algorithm was run from 100 different
starting points). We tested different ratios of the lengths of
the backbone estimation phase and the actual backbone search
phase in BGWalksat. We found that a ratio of about 0.3 seems
to provide the best results. In the results shown below, Walksat
was run on the first 30 tries to collect the initial set of local min-
ima and obtain the pseudo-backbone frequencies. BGWalksat
was run on the remaining 70 tries. New local minima were
added to update pseudo-backbone frequencies every 5 tries.

We experimentally compared the two methods for comput-
ing pseudo-backbone frequencies (Section 4.3). The average
counting (AC) method is generally worse than the cost recip-
rocal average counting (CRAC) method on random problems.
Due to space limitations here, we will only report the results
from the CRAC method below.

There is little impact of biased moves when the C/V ratio
is 2.0, because Walksat is able to find optimal solutions in the
first 30 tries in almost all problems. Figure 3 shows the results
on random Max-SAT with 2,000 variable and C/V ratios of 4.3
and 8.0, comparing Walksat and BGWalksat with biased noise
pick, biased greedy pick, and bias moves combining biased
noise pick, greedy pick, clause pick, and assignment genera-
tion. The error bars in the figures correspond to 95% confi-
dence intervals. As shown, biased greedy pick is effective at
low noise levels, but leads to degraded performance on higher
noise levels. Biased noise pick, on the other hand, has a greater
effect as the noise level increases, due to the direct relationship
between the noise level and the frequency of noise picking. Bi-
ased assignment generation and clause pick on their own, have
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Figure 3: Quality improvement on random Max-SAT using bi-
ased noise pick, biased greedy pick, and the combination of
biased noise pick, greedy pick, clause pick, and assignment
generation (combined bias).

little effect of Walksat’s performance (data not shown). How-
ever, when combined with other strategies, they can provide
improvements, as shown.

We also tested Walksat and BGWalksat with dynamic noise
on the same instances, with good results. This is fairly un-
surprising, since on this class of instances, Walksat performs
best with a low noise ratio, and dynamic noise begins with the
noise ratio set to zero, and only raises it as needed. We found
that the noise parameter fluctuated at low levels, with an av-
erage of 0.2 for both C/V=8 and C/V=4.3. The noise level
never exceeded 0.6 at any time. The solutions found by Walk-
sat with dynamic noise were as good as the best solutions found
by Walksat with static noise for C/V=8, and only about 3.5%
worse for C/V=4.3. When combining dynamic noise with BG-
Walksat, the average noise level was slightly lower, giving 0.13
for C/V=8 and 0.15 for C/V=4.3, due to the increased number
of random restarts. This is because after every restart there is
a period of rapid improvement, when the noise level remains
at zero. The performance of BGWalksat with dynamic noise is
similar to that of BGWalksat with best static noise for C/V=8
and slightly worst than that for C/V=4.3.

5.2 Real problem instances
We now investigate how BGWalksat improves upon Walksat
on the problems from SATLIB [9], when used in conjunction
with dynamic noise. The test problems include SAT-encoding
instances from a random hard graph coloring problems and
SAT-encoded blocks world planning, bounded model check-
ing, and the all interval series problem. The details of these
problems can be found on the website. We only chose prob-
lems with more than 350 variables, and discarded those that
can be easily solved by Walksat and BGWalksat.

We considered satisfiable and unsatisfiable problems. We
ran both Walksat and BGWalksat, both using dynamic noise,
with a total of 10 million flips (compared with 1 million for
our results for random instances). Interestingly, BGWalksat
exhibited superior performance, over a wide range of real in-
stances, with some of the methods of biased-moves utiliz-
ing the pseudo-backbone disabled. For the results presented
here, we use backbone-guided noise pick and backbone-guided
clause pick, with the average-counting (AC) method. Results
are for twenty runs for each algorithm and instance. Experi-
ments with the best static noise (not shown) produced similar
results.

In viewing the results, we found it useful to divide the satis-
fiable instances into two categories, the easier instances, which
were solved at least once (Table 1), and the harder ones, which

Table 1: Walksat vs. BGWalksat on easier satisfiable problems.
Walksat and BGWalksat are the runs resulting in a satisfying
solutions (out of 20) by these algorithms. The better results are
underlined and in bold.

problem #Var #Clause Walksat BGWalksat

bw large.c 3016 50457 1 2
bw large.d 6325 131973 1 0

par8-1 350 1149 6 19
par8-2 350 1157 6 19
par8-3 350 1171 7 17
par8-4 350 1155 0 16
par8-5 350 1171 1 15
qg1-08 512 148957 8 12
qg2-08 512 148957 1 4
qg3-08 512 10469 11 20
qg6-09 729 21844 0 5
qg7-09 729 22060 4 5
g125.17 2125 66272 5 0
g250.29 7250 454622 4 2

were not solved by either method, in any of their runs (Table 2).
Results for unsatisfiable instances are presented in Table 3.

As the results show, BGWalksat significantly outperforms
Walksat in most cases. On easier satisfiable instances (Table 1),
BGWalksat finds more satisfying solutions than Walksat for all
parity (�0l�m ) and quasigroup ( ngo ) classes, and produces similar
results to Walksat on blocksworld instances. On harder satis-
fiable instances (Table 2), BGWalksat outperforms Walksat in
all but two of 34 instances, where it is less than half a percent
worse. In contrast, the overall average gain is 30%, and is over
50% in 11 of them. On unstatisfiable instances (Table 3), BG-
Walksat produces impressive gains on longmult instances, and
on ssa6288-047, with an overall average gain of 20%. On un-
satisfiable quasigroup instances (not shown), performance was
similar to that of Walksat. Performance of BGWalksat is never
more than 10% worse than Walksat on any of the unsatisfiable
instances we have studied.

The most glaring failure of BGWalksat is on the instances
o � 8$�:� � 4 and o:8$�-���*8-1 . These instances are SAT-encoded graph
coloring problems, and serve to illustrate an important point.
As described in Section 3, we believe that our method is effec-
tive because it exploits the “big valley” structure of the solution
space. However, graph coloring problems exhibit a particular
type of symmetry in their solution structures which is opaque
to local search methods such as Walksat. For example, color-
ing all red nodes green, and all green nodes red, results in an
identical solution, with a radically different encoding. Thus,
there is not a single “big valley”, but several, which can bury
the true backbone information and thus lead to degraded per-
formance. Presumably, BGWalksat’s performance will suffer
on all instances with this type of symmetry.

6 Conclusions
We developed a novel and general method that exploits back-
bone information for improving the performance of a local
search algorithm. We demonstrated and analyzed the new
method, called BGWalksat, on Max-SAT using the Walksat
algorithm, with both static and dynamic noise strategies. The
main ideas are to extract backbone information from local min-
ima and use it directly to fix the discrepancy between the cur-
rent state and optimal solutions, so as to guide Walksat toward
the regions of the search space more likely to contain optimal
solutions. In comparison, almost all existing local search meth-
ods focus on the costs of the states in the search space. There-



Table 2: Walksat vs. BGWalksat on harder satisfiable prob-
lems. Walksat and BGWalksat are the average numbers of
violations in the best solutions found by the algorithms for a
given problem, averaged over 20 runs. Gain is the percentage
improvement of BGWalksat over Walksat. The better results
are underlined and in bold.

problem #Var #Clause Walksat BGWalksat gain (%)

bmc-ibm-1 9685 55870 25.3 4.15 83.60
bmc-ibm-2 3628 14468 5.4 1.2 77.78
bmc-ibm-3 14930 72106 115.25 19.7 82.91
bmc-ibm-4 28161 139716 118.15 38.9 67.08
bmc-ibm-5 9396 41207 12.95 1.25 90.35
bmc-ibm-6 51654 368367 358.25 103.6 71.08
bmc-ibm-7 8710 39774 17.4 6.4 63.22

bmc-galileo-8 58074 294821 65.65 15.5 76.39
bmc-galileo-9 63624 326999 95.95 17.3 81.97
bmc-ibm-10 61088 334861 406.15 162.45 60.00
bmc-ibm-11 32109 150027 439.8 358.45 18.50
bmc-ibm-12 39598 19477 554.65 445.25 19.72
bmc-ibm-13 13215 6572 88.05 2.7 96.93

f2000 2000 8500 2.2 2.05 6.82
par16-1-c 317 1264 5.45 5.35 1.83
par16-1 1015 3310 10.45 9.45 9.57

par16-2-c 349 1392 6.2 5.9 4.84
par16-2 1015 3374 10.6 10.4 1.89

par16-3-c 334 1332 6 5.65 5.83
par16-3 1015 3344 10.45 9.75 6.70

par16-4-c 324 1292 6.15 5.5 10.57
par16-4 1015 3324 10.4 9.55 8.17

par16-5-c 341 1360 6.25 6.05 3.20
par16-5 1015 3358 10.45 9.85 5.74

par32-1-c 1315 5254 21.7 20.85 3.92
par32-1 3176 10277 30.95 30.25 2.26

par32-2-c 1303 5206 21.15 21.2 -0.24
par32-2 3176 10253 32.1 28.35 11.68

par32-3-c 1325 5294 22.05 21.3 3.40
par32-3 3176 10297 32.95 28.55 13.35

par32-4-c 1333 5326 21.3 21.4 -0.47
par32-4 3176 10313 33.65 29.4 12.63

par32-5-c 1339 5350 23.15 22.05 4.75
par32-5 3176 10325 32.9 30.3 7.90
Average 29.82

fore, the new algorithm focuses more on where the current state
is within the search space and tries to fix possible problems in
the structures of the state directly.

BGWalksat can significantly outperforms Walksat on SAT
and Max-SAT, with both static and dynamic noise. On random
Max-3-SAT problems, the more constrained the problems, the
more improvement BGWalksat can provide. Specifically, on
random Max-3-SAT with 2,000 variables and a C/V ratio of
8.0, BGWalksat can satisfy approximately 10% more clauses
on average than Walksat (using dynamic noise). On satisfi-
able problems from the SATLIB, BGWalksat almost always
significantly improves on Walksat’s results, with the exception
of graph coloring problems which contains a type of symme-
try (see Section 5). On unsatisfiable SATLIB problems, BG-
Walksat substantially reduces the number of unsatisfied clauses
across several instance classes.

In the process of developing BGWalksat, we also carried out
a systematic experimental analysis of Walksat on Max-SAT
(again with both static and dynamic noise). Our results show
that although designed originally for SAT, Walksat is also ef-
fective on Max-SAT, even though its effectiveness degrades as
the problem becomes more constrained.
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