
Hardware-Accelerated Parser for Extraction
of Metadata in Semantic Network Content

James Moscola, Young H. Cho, John W. Lockwood
Reconfigurable Network Group

Washington University in St. Louis
1 Brookings Drive, Campus Box 1045

St. Louis, MO 63130
{jmm5, young, lockwood}@arl.wustl.edu

http://www.arl.wustl.edu/arl/projects/fpx/reconfig.htm

Abstract—We have implemented a new network information
processing system using reconfigurable hardware that scans
volumes of data in real-time. One of the key functions of the
system is to extract semantic information.Before we can de-
termine the meaning of text, we must identify its language.
In a previous project, we have implemented an N-gram based
language identifier that can process up to 1 Gbps through-
put. However, a large percentage of computer network traf-
fic, such as email and web data, consists of markup infor-
mation such as tags and protocol specific options. This ad-
ditional data interferes with the language identification pro-
cess causing decreased accuracy. Thus, we developed a hard-
ware architecture for configurable application level process-
ing. Our Application Level Processing System (ALPS) is a
custom processor that is automatically generated using syn-
tactic structure of the content. The resulting circuit is mapped
on to a reconfigurable device to efficiently extract only the rel-
evant data for the language identifier. To illustrate the effec-
tiveness of the architecture, we have implemented a system
that can process electronic mail. Our experiments show that
ALPS can improve the accuracy of the hardware language
identifier by up to a factor of 200 as compared to a system
that does not decode the application-level protocol data. 1 2

TABLE OF CONTENTS

1 INTRODUCTION

2 BACKGROUND

3 SEMANTIC CLASSIFICATION SYSTEM

4 LANGUAGE IDENTIFICATION HARDWARE

5 APPLICATION LEVEL PROCESSING SYSTEM

6 IMPLEMENTATION OF EMAIL PARSER

7 DATA SETS & RESULTS

8 CONCLUSIONS

This research was sponsored by the Air Force Research Laboratory, Air
Force Materiel Command, USAF, under Contract number MDA972-03-9-
0001. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of AFRL or the U.S. Govern-
ment.

11-4244-0525-4/07/$20.00 c©2007 IEEE
2IEEEAC paper #1281, Version 1, Updated January 7, 2007

1. INTRODUCTION

In previous Aerospace papers [1][2], we have developed
hardware-accelerated semantic processing system for analyz-
ing computer network traffic. This system uses latent seman-
tic indexing techniques to analyze and classify the topic of
streaming documents at multi-gigabit per second data rates
[3].

In order to assist the system to efficiently process the data,
an additional module was developed that identifies language
and character encoding used in network data. This module,
called HAIL (Hardware-Accelerated Identification of Lan-
guages), uses N-grams discovered from training documents
to determine the language and encoding of documents that
pass through the system. Experimental results with multilin-
gual datasets showed the accuracy of HAIL to be very high.
In many cases, the identification accuracy reached above 99
percent [4].

However, most Internet documents, such as XML, HTML,
and email contain a large amount of markup and header data.
This markup data can have a negative impact on the language
detection algorithms used by HAIL. To improve the accuracy
of HAIL, and hence the accuracy of the whole document clas-
sification system, there is a need to identify and extract docu-
ment content from the markup data.

In this paper, we describe the implementation and results of
a high-speed hardware-based parser implemented with Field
Programmable Gate Array (FPGA) technology. The circuits
that implement the hardware-accelerated parser are automat-
ically generated using a custom compiler that we have devel-
oped. The compiler accepts a Lex/Yacc style grammar that
specifies one or more grammars. Once generated, the parser
can be configured to forward and/or remove specific fields of
the grammar based on user preference. We show how our
hardware-based parser can be configured to remove headers
and attachments from email messages, leaving only the mes-
sage content to be processed by the language identification
algorithm and document classifier. By removing markup and
header data, we can improve the accuracy of language identi-
fication algorithms. Our current hardware-accelerated parser
can process documents at over 600 Mbps in in a Xilinx Vir-
texE 2000 FPGA.

2. BACKGROUND

The hardware platform and protocol processing that this work
builds upon has been described in previous papers. This
section includes a short description of that work, including
the Field-Programmable Port Extender platform and the TCP
protocol processor.

Field-Programmable Port Extender

The Field-Programmable Port Extender (FPX) is a general
purpose, reprogrammable platform that performs data pro-
cessing in FPGA hardware [5]. As data packets pass through
the device, they can be processed in the hardware by user-
defined, reprogrammable modules. Hardware-accelerated
data processing enables the FPX to process data at multi-
gigabit per second rates, even when performing deep process-
ing of packet payloads.

The FPX contains two FPGAs. A Xilinx Virtex XCV600E
FPGA routes packets into and out of the FPX. It also con-
trols the routing of packets to and from the application FPGA.
The application FPGA, which executes the user-defined hard-
ware modules, is a Xilinx Virtex XCV2000E (upgraded from
an XCV1000E that was used on the first version of the plat-
form). The FPX also contains two banks of 36-bit wide Zero-
Bus-Turnaround Static RAM (ZBT SRAM) and two banks of
64-bit PC-100 Synchronous Dynamic RAM (SDRAM). Fully
configured, the FPX can access four parallel memories with
a combined capacity of 1 Gigabyte.

TCP Protocol Processor

The TCP-Processor is an FPGA based TCP protocol proces-
sor [6]. It was designed and implemented to support the pro-
cessing of up to 8 million simultaneous TCP flows in high-
speed networks. The TCP-Processor provides stateful flow
tracking and TCP stream reassembly for network applications
which process TCP data streams. Additionally, the TCP-
Processor includes encoder and decoder circuits which enable
it to serialize a TCP flow along with corresponding flow infor-
mation. This serialized information can then be transported
off-chip to multiple other FPGAs for packet processing.

3. SEMANTIC CLASSIFICATION SYSTEM

As described in [1][2][3], a hardware-accelerated document
classification system has been developed that uses latent se-
mantic indexing techniques to classify streaming documents.
The system is designed to ingest and classify large volumes
of network data in real time. Classification is accomplished
through a series of mathematical transformation algorithms
as shown in figure 1. Each step of the transformation is im-
plemented in reconfigurable hardware on a series of stackable
FPX devices.

As data packets enter the system, they are first processed by
the TCP processor. The TCP processor reconstructs packets
into consistent TCP flows. Each flow is augmented with con-

Decode Input TCP data streams and interpret content

Map input words to basewords that have
semantic meaning

Receive large volume of input content
over a network (Example: HTML documents)

Score documents against
known and emerging concepts

Count word frequencies in each document

Automatically Threshold, classify, and
cluster content into groups for analyst.

ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ............ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ............

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Decode Input TCP data streams and interpret content

Map input words to basewords that have
semantic meaning

Receive large volume of input content
over a network (Example: HTML documents)

Score documents against
known and emerging concepts

Count word frequencies in each document

Automatically Threshold, classify, and
cluster content into groups for analyst.

ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ............ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ............

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Figure 1. Flow of documents through the document classifi-
cation system

trol signals that indicate where the IP header, the TCP header
and data segment of each packet starts. Additionally, a flow
identification number is assigned to each TCP flow so down-
stream components can manage per-flow context. Each TCP
flow is considered to be a single document.

Reconstructed TCP flows are subsequently processed by a
word mapping circuit. The word mapping circuit tokenizes
each TCP flow to find words in the flow. For each word that
is found, a hash is computed that is used as an address into a
word mapping table (WMT). The WMT is a 1 million entry
table that maps 1 million input words down to 4000 base-
words. A baseword is a numerical representation of the se-
mantic meaning of the input word. For example, the input
words “sleep”, “sleeping”, “nap”, and “siesta” all have sim-
ilar semantics. As such, the WMT would map all of these
words to the same baseword value. For details on the differ-
ent techniques used to create the WMT, refer to [1].

Once a flow has been tokenized, the list of basewords is sent
downstream to a module that maintains a count of the base-
words for each active flow. The count is maintained in a
4000-dimension document vector, where each dimension rep-
resents one of the possible baseword outputs of the WMT.

At the conclusion of each flow, the 4000-dimension docu-
ment vector is sent to the scoring module. The scoring mod-
ule computes a dot product of the document vector against
up to 30 previously defined 4000-dimension concept vectors.
The flow is subsequently classified according to the highest
scoring concept.

4. LANGUAGE IDENTIFICATION HARDWARE

In an effort to further enhance the capabilities of the semantic
document classification system, the HAIL module was devel-
oped. This module integrates into the document classification
system and identifies the language and character encoding of
each TCP flow prior to classification [4][7].

Identifying the language and character encoding allows the
semantic classification system to employ encoding specific
tokenizers as well as language specific WMTs. Using an en-
coding specific tokenizer allows the system to reduce noise by
only accepting characters known to be a member of a given
character set in a given language. Language specific WMTs
allow the system to differentiate between words that occur
in multiple different languages but have different meanings
in each language. Separating WMTs by languages also has
the benefit of breaking one large WMT into many smaller
WMTs, thereby reducing the number of entries in each table.
Fewer table entries can help to alleviate any hash collisions
that may occur during the baseword translation.

HAIL utilizes N-grams to identify both the language and
character encoding of a data stream. An N-gram consists of N
sequential characters that have been extracted from the data
stream. As HAIL processes a data stream, a series of five
sequential characters (tetra-grams) are extracted to represent
the document. Each unique tetra-gram is associated with a
single language/encoding pair through offline training. As
tetra-grams are extracted from a document, a counter for the
associated language/encoding pair is incremented. At the end
of a document, HAIL identifies the language and encoding
based on the counter with the highest value.

5. APPLICATION LEVEL PROCESSING SYSTEM

When properly trained, HAIL can accurately identify the lan-
guage of a streaming document up to 99.95% of the time.
However, this result, assumes that HAIL is processing clean
documents composed of mostly (if not entirely) text in a sin-
gle language. This is unlikely to be the case when processing
many types of Internet traffic. For example, both HTML and
email documents contain headers and tags that are likely to be
identified as English whereas the body of the document may
actually be Spanish, German, or Arabic. Given a document
with enough header information, HAIL may incorrectly iden-
tify the language of the document due to the N-grams found
in the header.

Consider the sample email shown in figure 2. The email
header consists of over 1500 bytes of data, whereas the email
body consists of only 65 bytes of data. It is desirable that
HAIL identify the language found in the email body and not
in the email header. Additionally, it is desirable that only the
body of the email message is processed by the document clas-
sification system. If the email is processed by both HAIL and
the document classification system with the headers intact, it
is unlikely that either HAIL or the document classification
system will exhibit the desired behavior.

To alleviate the problems described above, we built an ad-
ditional module, the Application Level Processing System
(ALPS), which has been discussed previously in [8][9][10].
ALPS is a hardware-based parsing module that has been im-
plemented on an FPX to serve as a preprocessor for the HAIL
module. The ALPS circuits can be automatically generated

Return-Path: <sender@smtp.server.com>
X-Original-To: sender@smtp.server.com
Delivered-To: receiver@smtp.server.com
Received: from Lappy (24-107-16-209.dhcp.stls.mo.charter.com [24.107.16.209])

by smtp.server.com (Postfix) with ESMTP id BA74636BF2
for <receiver@smtp.server.com>; Fri, 27 Oct 2006 03:35:29 -0500 (CDT)

Message-ID: <039801c6f9a2$c06f36d0$eaa0fc80@Lappy>
From: “Sender" <sender@smtp.server.com>
To: “Receiver" <receiver@smtp.server.com>
Subject: Example Email
Date: Fri, 27 Oct 2006 03:34:42 -0500
MIME-Version: 1.0
Content-Type: multipart/alternative;

boundary="----=_NextPart_000_0395_01C6F978.D7451B60"
X-Priority: 3
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 6.00.2900.2869
X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2900.2962
X-Virus-Status: No
X-Virus-Checker-Version: clamassassin 1.2.3 with clamdscan /

ClamAV 0.88.2/2105/Thu Oct 26 03:14:55 2006
X-Spam-Checker-Version: SpamAssassin 3.0.5 (2005-11-28) on smtp.server.com
X-Spam-Level:
X-Spam-Status: No, score=-0.3 required=6.0 tests=AWL,BAYES_00,HTML_80_90,

HTML_MESSAGE,RCVD_IN_NJABL_DUL,RCVD_IN_SORBS_DUL autolearn=no
version=3.0.5

Status: O
X-UID: 39213
Content-Length: 1082
X-Keywords:

This is a multi-part message in MIME format.

------=_NextPart_000_0395_01C6F978.D7451B60
Content-Type: text/plain;

charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

Hola mama. La universidad es grande. Enviar por favor el dinero.

------=_NextPart_000_0395_01C6F978.D7451B60--

Email Headers

Email Body

Email Footer

Return-Path: <sender@smtp.server.com>
X-Original-To: sender@smtp.server.com
Delivered-To: receiver@smtp.server.com
Received: from Lappy (24-107-16-209.dhcp.stls.mo.charter.com [24.107.16.209])

by smtp.server.com (Postfix) with ESMTP id BA74636BF2
for <receiver@smtp.server.com>; Fri, 27 Oct 2006 03:35:29 -0500 (CDT)

Message-ID: <039801c6f9a2$c06f36d0$eaa0fc80@Lappy>
From: “Sender" <sender@smtp.server.com>
To: “Receiver" <receiver@smtp.server.com>
Subject: Example Email
Date: Fri, 27 Oct 2006 03:34:42 -0500
MIME-Version: 1.0
Content-Type: multipart/alternative;

boundary="----=_NextPart_000_0395_01C6F978.D7451B60"
X-Priority: 3
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 6.00.2900.2869
X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2900.2962
X-Virus-Status: No
X-Virus-Checker-Version: clamassassin 1.2.3 with clamdscan /

ClamAV 0.88.2/2105/Thu Oct 26 03:14:55 2006
X-Spam-Checker-Version: SpamAssassin 3.0.5 (2005-11-28) on smtp.server.com
X-Spam-Level:
X-Spam-Status: No, score=-0.3 required=6.0 tests=AWL,BAYES_00,HTML_80_90,

HTML_MESSAGE,RCVD_IN_NJABL_DUL,RCVD_IN_SORBS_DUL autolearn=no
version=3.0.5

Status: O
X-UID: 39213
Content-Length: 1082
X-Keywords:

This is a multi-part message in MIME format.

------=_NextPart_000_0395_01C6F978.D7451B60
Content-Type: text/plain;

charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

Hola mama. La universidad es grande. Enviar por favor el dinero.

------=_NextPart_000_0395_01C6F978.D7451B60--

Email Headers

Email Body

Email Footer

Figure 2. Sample email message

via a custom compiler when provided with a grammar in a
Lex/Yacc style format. Additionally, ALPS allows specific
fields of a grammar to be either forwarded or removed based
on a users preference. Referring back to the sample email in
figure 2, ALPS can be configured to identify and parse the
entire email message and forward only the email body down-
stream to HAIL and the document classification system.

6. IMPLEMENTATION OF EMAIL PARSER

Implementing an email parser using ALPS first required
defining a grammar for email. We utilize the standard email
grammar as defined in RFC 2822 [11], and incorporate gram-
mars defined in RFC 2045 [12] and RFC 2046 [13] to prop-
erly parse both MIME header extensions and multipart email
messages. A small excerpt representing the date portion
from RFC 2822 is shown in Augmented Backus Naur Form
(ABNF) in figure 3. Figure 4 shows the same portion of the
grammar after it has been converted from ABNF into the for-
mat accepted by our hardware generator. The complete gram-
mar for the email parser consists of over 160 tokens and 200
production rules.

�����������	��
	����
��	�������	�������������������������	�! #"�$��	��
	�%
 &� '"�$��
���������	�������������(
� '"�$������)���)*)�)
	�
��������*)�)
	���+��,)��*��.-+�'/�0����.-+��"������.-1�'/�2�0��.-+�� �3����.-+�)$)�����.-1��$�0�*��
�������4�������5
��	*)��26������3
������3.��7	8)9	:�;�:�/

���*)��2��< '"�$�
)��*��	2	�)*)�)
	�< '"�$

���*)��2	�)*)�)
	�4�<��=)�	*��.-+�	 ��	>��.-1��,	��3��?-+�'@�A�3��.-+��,	�����.-1�)=)0�*��?-

�)=�0�B��.-+��@�0)C��.-1��$)�	A��?-+�'D�E)���.-+��F)�)G��.-1��9��	E��
�����5�%
� '"�$��5H�8�I�9	:�;�:�/
�	��
	�4���	��
	���������)�����+ '"�$4J)��*)�
�	��
	�����	���������5��2)��0�3���K��6
���*�0)�	�(
.��K��4L��	E���*)���

���*�0������5I)9�:�;�:�/
L��	E���*)���5I)9�:�;�:�/
2���0�3.�5I)9	:�;�:�/
J)��*)�4�1M���NO�P-1�)�	�6Q47	9	:�;�:�/

Figure 3. ABNF for date portion of email grammar

R�S�T�U�V�T	W�X	UZY R�S�T�U�V)T	W�X	U�V�[�\)T4R�S�T�U<]'^�_�T	W�X	U�`�]'^�_	V�[�\�TZa
R�S�T�U�V�T	W�X	U�V�[�\)TbYcR�S�d�V�[�e�V�f�U�U�g5h�i�hkj�a
R�S�d�V�[e�V�f�U�U�gbY]'^�_	V�[�\)T4R�S�d�V)l)S)X	UZa
R�S�d�V�l)S)X	UZY h�m�[�l�h(jnh'o�p�U�hkjnh'^�U�R�hkjnh'o�q�p�h(jnh�]�r�W�hkjnh�_�S�T�hkjnh�_�p�l�hOa
R�S�T�UsY R�S�d�X	[�l)T	q6d�U�S�r�a
d�U�S�r�Y t	u�v�u�o<t	u�v�u�o<t	u�v�u�o<t	u�v�u�o�d�U�S�r�V�[�\)TZa
d�U�S�r�V�[�\)TZY t	u�v�u�o5d�U�S�r�V�[�\)T�j�a
X�[�l)T�qbY]'^�_�X	[�l)T	q	V)l�S)X	U!]'^�_Za
X�[�l)T�q	V)l)S)X	UZY h)w�S	l�h(jnh�]�U�x�hkjnh�m�S�r�hkjnh'y�\�r�h(jnh�m	S)d�hkjnh)w�p�l�zkj

h)w)p�{�h(jnh'y�p�|�hkjnh�_�U	\�hkjnh�}�~)T�h(jnh��)[���hkjnh�t	U	~�h�a
R�S�d�Y]'^�_	V�[�\)T4t	u�v�u�o!R�S�d�V��)R	W)|Za
R�S�d�V��)R	W)|ZY t	u�v�u�o�j�a
T	W�X	UsY T	W�X	U�V�[e�V�R�S�d1]'^�_��)[�l)UZa
T	W�X	U�V�[e�V�R�S�d�Y q�[�p�r�h�Y�h?X�W	l�p)T�U4T	W)X	U�V�[e�V�R�S�d�V�[�\)TZa
T	W�X	U�V�[e�V�R�S�d�V�[\)TsY.h�Y�h��)U	~�[�l)R�j�a
X�W�l�p�T�UZY t	u�v�u�o<t	u�v�u�o�a
��U	~�[�l)RZY t	u�v�u�o<t	u�v�u�o�a
q�[�p�r�Y t	u�v�u�o<t	u�v�u�o�a
�)[�l)UsY �)[�l)U�V)S4�)[�l)U�V)xba
�)[�l)U�V�SZY h���hkjPh)V	h�a
� [�l)U�V)xbY t	u�v�u�o<t	u�v�u�o<t	u�v�u�o<t	u�v�u�o�a

Figure 4. BNF for date portion of email grammar

As shown in figure 5, the email parser consists of several main
components: the lexical analyzer, the parsing structure, and
the filtering module. Both the lexical analyzer and the pars-
ing structure are automatically generated from the grammar
tokens and the grammar production rules respectively. The
filtering module receives information from the parsing struc-
ture and can be configured to either keep or discard data given
the state of the parser. The following sections discuss the ar-
chitecture and generation of the lexical analyzer and the pars-
ing structure.

Lexical
Analyzer

...

Grammar

Parsing
Structure

data
packets

...

Tokens

Filtering
Module

filtered data
packets

Figure 5. ALPS email parser architecture

Lexical Analyzer

As data enters the email parser it is first processed by the lex-
ical analyzer. The lexical analyzer is a pattern matcher that
scans the input data for strings that match tokens in the in-
put grammar. The pattern matcher architecture is an 8-bit
pipelined character grid as described by Baker in [14]. A
detailed block diagram of the decoded character pipeline is
shown in figure 6. The top half of the figure shows the de-
coded character pipeline, whereas the bottom half shows a
sample string detector required to match the From: token in
the email grammar. The string detectors required for each of
the tokens in the grammar are automatically generated by our
custom tools.

The pipeline receives one character per clock cycle from the
input data stream. Before entering the pipeline registers, char-
acters are passed into an 8-to-256 bit decoder. The 256-bit
output represents a single bit line for each of the 256 possible

m
3

m
4...

a
b
c

m
1

m
2

256-bit decoded registers

m
0

8-bit
 to

 256-bit
decoder

data

m4[F]
m3[r]
m2[o]

pattern(0)
"From:"

m1[m]
m0[:]

unused
unused ...

pattern(n)

patterns[n:0]unused

Figure 6. Pattern matcher for lexical analysis

ASCII characters. This decreases the hardware routing re-
source required for matching the tokens in the grammar. The
decoded character lines are passed into the pipeline registers
as illustrated in figure 6. The pipeline can detect patterns that
are less than or equal to the length of the pipeline. Addi-
tionally, the pipeline only needs to be as long as the longest
pattern in the grammar

The actual pattern matching is executed by a series of string
detectors which are automatically generated. A match is
found by ANDing together the appropriate bits from the de-
coded character pipeline as characters traverse through the
pipeline. A single bit line is output from the lexical analyzer
to the parsing structure for each of the string detectors. These
signals indicate to the parser when a match is found.

Parsing Stucture

The parsing structure gives the email parser the ability to un-
derstand input data stream at the application level. It defines
the semantics of tokens as they are detected by the lexical an-
alyzer and maintains the contextual state of the data stream.
The hardware logic required for the parsing structure is de-
termined from the input grammar. The production list of the
grammar defines all of the possible transitions for the gram-
mar. Maintaining the state of the grammar while processing
data allows the parser to determine which tokens can occur
next.

In the parsing structure, each token is represented using a
simple primitive that consists of a single register and a sin-
gle AND gate. The inputs to each of the AND gates are the
output signals from the lexical analyzer. The output of each
AND gate represents a transition in the state of the grammar
and is routed to the input of other token registers. Transitions
are determined from the production list of the grammar us-
ing the well known FIRST and FOLLOW set algorithms [15].
The resulting sets are then used to map the output of token

primitives to the input of each of the token primitives listed
in its FOLLOW set.

To clearly illustrate how the parsing structure is generated,
we use the example grammar defined in figure 7 and generate
the corresponding parser hardware.

To generate the parser hardware, we first need to find the
FOLLOW set for each of the tokens in the grammar. Fig-
ure 8 shows a table of the FOLLOW sets for all the tokens
in the grammar. In addition to the terminal tokens, we need
to find all the possible start terminals. Since production E is
the starting production, we can use the FIRST set of E as the
starting symbols. Then, we forward the output of each token
primitive to the inputs of the tokens listed in its FOLLOW set.
When there is more than one connection to the input of a to-
ken primitive, an OR gate is used to combine the signals into
a single bit input. Figure 9 shows our hardware parser for
if-then-else grammar.

No. Production
1 E → if C then E else E | go | stop
2 C → true | false

Figure 7. Production list for if-then-else grammar

Tokens FOLLOW Set
if {true, false}

then, else {if, go, stop}
go, stop {else, ε}

true, false {then}

Figure 8. FOLLOW set for each of the terminal tokens

if
p0

start
of flow

stop
p2

go
p1

true
p3

false
p4

else
p6

then
p5

end

Figure 9. Detailed view of a sample parser core

As the hardware parser processes a data stream the parser re-
ceives a signal from the lexical analyzer for each token that is
found. These signals allow the parser to traverse the grammar
and maintain the contextual state of the data stream. While
doing so, the parser also forwards token information along
with the state of the parsing structure downstream for further
processing.

7. DATA SETS & RESULTS

To test the effectiveness of the ALPS email parsing circuit,
five different data sets were created. Each data set consisted
of 10,816 email messages in 14 different languages. The
email headers for each of the emails in all five data sets were
similar in both size and content to the email header shown
in figure 2. The size of the email body was different for the
five different data sets, with the smallest email body being 75
bytes and the largest being 1200 bytes. The source text for
the email bodies was the same for all five data sets. There-
fore, the first 75 bytes of all 1200 byte emails is identical to
the first 75 bytes of the corresponding email in the 75 byte
data set (and all other data sets). The table in figure 11 shows
the email body sizes for all five different data sets.

Each of the five data sets was first created as 10,816 text files
that consisted of the email headers and body. We built a tool
to convert these text files into 10,816 TCP flows that could be
replayed into the hardware for live testing.

The results for processing the 300 byte emails are shown in
figure 10. The Lang ID column is a unique number that
HAIL uses to represent each language. The Language col-
umn shows the 14 different languages that were part of our
data set. The TRUTH column represents the number of doc-
uments in the data set that were actually the given language.
The HAIL column represents the number of documents HAIL
reported as the given language when operating alone. The
ALPS+HAIL column represents the number of documents
HAIL reported as the given language when each flow was
preprocessed using the ALPS email parser. Note that the to-
tal number of documents in the HAIL and the ALPS+HAIL
columns are not the same as the total number of documents
in the TRUTH column. This is the result of some documents
being reported as a language that is not in our data set (i.e.
some documents may have been reported with a language ID
of 35 which is not shown in the table).

The table in figure 10 indicates that the email headers used
in our data set have a strong negative affect on the language
identification results for the 300 byte emails. From the re-
sults, it appears that the email headers have a significant num-
ber of Estonian tetra-grams. When using HAIL alone, 10,280
out of 10,816 documents are identified as Estonian; only one
of those documents is actually Estonian. This is because the
email headers in the data set are 1500 bytes, whereas the
email body is only 300 bytes. This means HAIL extracted
five times more tetra-grams from the email headers than it
extracted from the email body. This large disparity gave the
email headers a greater significance than the email body when
counting the number of tetra-grams to identify the language.

Overall, for the 300 byte data set, we can see that HAIL alone
only correctly identified the language of 3.98% (431 out of
10,816) of the documents, whereas ALPS+HAIL correctly
identified the language of 85.33% (9,229 out of 10,816) of
the documents.

Lang ID Language TRUTH HAIL # Correct # Incorrect ALPS+HAIL # Correct # Incorrect
1 albanian 1 0 0 0 6 1 5
2 arabic_trans 1447 390 390 0 1448 1447 1
4 czech 29 1 1 0 77 21 56
5 english 2691 0 0 0 2535 2321 214
6 estonian 1 10280 1 10279 28 1 27
7 french 916 0 0 0 875 835 40
8 german 700 0 0 0 604 585 19
13 italian 789 0 0 0 960 739 221
20 norwegian 43 144 39 105 75 40 35
24 portuguese 1634 0 0 0 1146 1103 43
28 spanish 2514 0 0 0 2346 2130 216
29 swedish 20 0 0 0 1 0 1
32 turkish 20 0 0 0 4 3 1
34 uzbek 11 0 0 0 3 3 0

TOTALS 10816 10815 431 10384 10108 9229 879
% Correct 3.98% 85.33%

Figure 10. Language identification results for the 300-byte data set

% Correct % Correct
Body Size # Correct HAIL Alone # Correct ALPS+HAIL
75-bytes 24 0.22% 5006 46.28%
150-bytes 38 0.35% 7532 69.64%
300-bytes 431 3.98% 9229 85.33%
600-bytes 4925 45.53% 9699 89.67%

1200-bytes 7290 67.40% 9837 90.95%

Figure 11. Percentage of correctly classified documents
when using HAIL alone and when using ALPS+HAIL

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

75-bytes 150-bytes 300-bytes 600-bytes 1200-bytes
Size of Email Message Body

Pe
rc

en
t o

f D
oc

um
en

ts
 C

la
ss

ifi
ed

 C
or

re
ct

ly

HAIL Alone ALPS+HAIL

Figure 12. Percentage of documents correctly classified by
HAIL for each of the five data sets

The percentage of correctly identified documents for all five
of the data sets is shown in figure 11. The same data is repre-
sented graphically in figure 12. The data for HAIL alone has
the expected behavior. When the size of the email header is
significantly larger than the email body, the output of HAIL
alone is skewed towards the language identified in the email
header. However, as the size of the email body increases and
becomes a larger percentage of the complete email message,
the results of HAIL alone become more accurate. As illus-
trated by the trend in figure 12, if the email body is large
enough in comparison to the email header, it will counterbal-
ance the affects of the email header.

Data Set % Increase
75-bytes 20758.33%
150-bytes 19721.05%
300-bytes 2041.30%
600-bytes 96.93%

1200-bytes 34.94%

Figure 13. The percent increase in accuracy when using
ALPS+HAIL as opposed to HAIL alone

0%

5000%

10000%

15000%

20000%

75-bytes 150-bytes 300-bytes 600-bytes 1200-bytes
Size of Email Message Body

Pe
rc

en
t I

nc
re

as
e

Figure 14. Graph showing the percent increase in accuracy
when using ALPS+HAIL

The data for ALPS+HAIL in figure 12 illustrates that the ac-
curacy of HAIL increases as the size of a clean document
increases. HAIL is more likely to correctly identify the lan-
guage of a larger documents due to the larger number of avail-
able tetra-grams.

Figures 13 and 14 show the percent increase in accuracy when
using ALPS+HAIL as opposed to HAIL alone. For large
emails where the size of the email body is close to the size of
the email headers using ALPS provides a 34.94% improve-
ment on our data set. For smaller emails, using ALPS as a
preprocessor to HAIL provides over 200 times improvement.

8. CONCLUSIONS

In this paper we presented our Application Level Processing
System and showed how it can be used to preprocess traffic
for hardware-accelerated identification of languages and doc-
ument classification. The custom ALPS processor is automat-
ically generated using the syntactic structure of the content to
be processed. In the functional system prototyped on the FPX
platform, ALPS extracts data from data streams at over 600
Mbps.

To illustrate the utility of ALPS, we implemented a system
that parses email messages and extracts the body of the mes-
sage for language identification. Our experiments show that
ALPS can dramatically improve the accuracy of HAIL. For
large (1200 bytes) emails, ALPS increases the accuracy of
HAIL 34.95%. For small emails (75 bytes), ALPS increased
the accuracy of HAIL up to 200 times.

REFERENCES

[1] S. G. Eick, J. W. Lockwood, J. Moscola, C. Kastner,
A. Levine, M. Attig, R. Loui, and D. J. Weishar, “Trans-
formation Algorithms for Data Streams,” in Proceed-
ings of IEEE Aerospace Conference, (Big Sky, MT,
USA), Mar. 2005.

[2] J. W. Lockwood, S. G. Eick, J. Mauger, J. Byrnes,
R. Loui, A. Levine, D. J. Weishar, and A. Ratner, “Hard-
ware accelerated algorithms for semantic processing
of document streams,” in IEEE Aerospace Conference
(Aero’06), (Big Sky, MT), p. 10.0802, Mar. 2006.

[3] J. B. Sharkey, D. Weishar, J. W. Lockwood, R. Loui,
R. Rohwer, J. Byrnes, K. Pattipati, D. Cousins,
M. Nicolletti, and S. Eick, “Information processing
at very high-speed data ingestion rates,” in Emergent
Information Technologies and Enabling Policies for
Counter Terrorism (R. Popp and J. Yin, eds.), pp. 75–
104, IEEE Press/Wiley, 2006. ISBN: 0-471-77615-7.

[4] C. Kastner, A. Covington, A. Levine, and J. Lockwood,
“HAIL: A Hardware-Accelerated Algorithm for Lan-
guage Identification,” in Proceedings of 15th Interna-
tional Conference on Field-Programmable Logic and
Applications (FPL), (Tampere, Finland), Aug. 2005.

[5] J. W. Lockwood, “An open platform for development
of network processing modules in reprogrammable
hardware,” in IEC DesignCon’01, (Santa Clara, CA),
pp. WB–19, Jan. 2001.

[6] D. Schuehler and J. Lockwood, “A Modular Sys-
tem for FPGA-based TCP Flow Processing in High-
Speed Networks,” in International Conference on
Field-Programmable Logic and Applications (FPL),
(Antwerp, Belgium), pp. 301–310, Aug. 2004.

[7] C. M. Kastner, “HAIL: An Algorithm for the Hardware-
Accelerated Identification of Languages,” Master’s the-
sis, Washington University, St. Louis, MO, USA, May
2006.

[8] Y. H. Cho, J. Moscola, and J. W. Lockwood, “Context-
Free Grammar based Token Tagger in Reconfigurable
Devices,” in Proceedings of International Conference of
Data Engineering (ICDE/SeNS), (Atlanta, GA, USA),
Apr. 2005.

[9] J. Moscola, Y. H. Cho, and J. W. Lockwood, “Im-
plementation of Network Application Layer Parser for
Multiple TCP/IP Flows in Reconfigurable Devices,” in
International Conference on Field Programmable Logic
and Applications (FPL), (Madrid, Spain), Aug. 2006.

[10] J. Moscola, Y. H. Cho, and J. W. Lockwood, “A Recon-
figurable Architecture for Multi-Gigabit Speed Content-
Based Routing,” in Proceedings of Hot Interconnects 14
(HotI), (Stanford, CA, USA), Aug. 2006.

[11] P. Resnick, “RFC 2822: Internet Message Format,” Apr.
2001.

[12] N. Freed and N. Borenstein, “RFC 2045: Multipurpose
Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies,” Nov. 1996.

[13] N. Freed and N. Borenstein, “RFC 2046: Multipur-
pose Internet Mail Extensions (MIME) Part Two: Media
Types,” Nov. 1996.

[14] Z. K. Baker and V. K. Prasanna, “A Methodology for
Synthesis of Efficient Intrusion Detection Systems on
FPGAs,” in IEEE Symposium on Field-Programmable
Custom Computing Machines, (Napa Valley, CA),
IEEE, April 2004.

[15] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles
and Techniques and Tools. Addison-Wesley, 1986.

James Moscola is currently a graduate student at Washing-
ton University in St. Louis doing research for the Reconfig-
urable Network Group (RNG). His research interests include
string and pattern matching, hardware-accelerated parsing,
content-based routing, and network intrusion detection and
prevention systems. He earned both his BS in Computer En-
gineering and MS in Computer Science from Washington Uni-
versity in St. Louis. He expects to complete his PhD in Com-
puter Engineering in 2007. He is a member of IEEE.

Young H. Cho is a Visiting Assistant Professor at Computer
Science and Engineering Department of Washington Univer-
sity in St. Louis. He has earned his BA in Computer Sci-
ence from UC Berkeley, MSE in Computer Engineering at UT
Austin, and PhD in Electrical Engineering at UCLA. He has
designed and implemented a number of high performance re-
search and development projects as well as commercial prod-
ucts during his career. His areas of expertise include network
security, computer networks, high performance computer ar-
chitecture, and reconfigurable computers. He is a member of
IEEE and ACM.

John W. Lockwood designs and implements networking sys-
tems in reconfigurable hardware. He leads the Reconfig-
urable Network Group (RNG) at Washington University in
St. Louis. The RNG research group developed the Field
programmable Port Extender (FPX) to enable rapid proto-
type of extensible network modules in Field Programmable
Gate Array (FPGA) technology. He is an Associate professor
in the Department of Computer Science and Engineering at
Washington University in Saint Louis. He has published over
75 full-length papers in journals and major technical confer-
ences that describe technologies for providing extensible net-
work services in wireless LANs and in high-speed networks.
Professor Lockwood has served as the principal investigator
on grants from the National Science Foundation, Xilinx, Al-
tera, Nortel Networks, Rockwell Collins, and Boeing. He has
worked in industry for AT&T Bell Laboratories, IBM, Sci-
ence Applications International Corporation (SAIC), and the
National Center for Supercomputing Applications (NCSA).
He served as a co-founder of Global Velocity, a networking
startup company focused on high-speed data security, but no
longer works for that company. Dr. Lockwood earned his MS,
BS, and PhD degrees from the Department of Electrical and
Computer Engineering at the University of Illinois. He is a
member of IEEE, ACM, Tau Beta Pi, and Eta Kappa Nu.

