Myricom’s FPGA based Approach to ATR/SLD

ARPA/ACS-PI-Mtg, Nov’97

Wen-King Su, Young Cho, Ruth Sivilotti, Danny Cohen, and Brian K. Bray (of SNL)

Myricom, Inc.
325 N. Santa Anita Ave, Arcadia, CA 91006
818-821-5555 <Cohen@Myri.com> Fx: 818-821-5316
http://www.myri.com
The ATR/SLD Task

Given a set of templates, organized by:
{ class | object | depression | orientation }
Example: { missiles -> scud -> steep -> 75° }.

Each object has many templates (at least 3*72).

The templates are static (i.e., fixed for a mission), but this may change for model-based algorithms. This approach can handle both cases.

Task: Match templates to given images.

The best K valid matches suggest probable targets in the image. (K=1,2,...)
Arrays

Image (52x52)

Template (32x32)

Search Area (21x21)

52 - 32 + 1 = 21

Myricom, ATR/SLD, ACS PI mtg, Nov-97, 4
Data Organization

A Template is 2 arrays of 32x32x1bit, and a few parameters (Bias, $\Theta_{\text{min}}, \Theta_{\text{max}}, B_{\text{Smin}}, D_{\text{Smin}}$), ~270B

An Image is an array of 64x64x1B, ~4KB

A Match-Task is an Image and IDs of templates (probably in two intervals).

A Hit is a degree of match between a template and an image.

Division of Labor

The SLD host processes images, determines areas of interest, identifies FOAs and issues Match-Tasks for images and sets of templates.

The SLD processors asynchronously return Hit-Reports, each with an image-ID, hit position, template-ID, and the best K valid hit-values (K=1,2,...).
Architecture 1

Each of the N processing nodes holds all the templates, and handles an entire Match-Task by itself.

At startup each node gets a few Match-Tasks. Thereafter, when a node returns a Hit-Report, it gets a new Match-Task.
Architecture 2

Each of the N processing nodes holds only 1/N of the templates. Each matches the image with all of its own templates, and forwards to the next node a partial ("up-to-here") Hit-Report and the Match-Task.

All node participate in each Match-Task.

All data flows in one stream. All tasks are given to the first node, and all Hit-Reports arrive to the host from the last node.
Scaleability

Arch-1

Arch-2

0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15

Myricom, ATR/SLD, ACS PI mtg, Nov-97, 10
Comparison

Architecture 1

- Scaleability
- Fault Tolerance
- Load Balancing

Architecture 2

- Scaleability
- Fault Tolerance
- Load Balancing

Myricom, ATR/SLD, ACS PI mtg, Nov-97, 11
Architecture 3 (hybrid)
Info Flow in Each Node

The LANai receives a Match-Task and prepares pointers for the FPGA to perform matches, and to return match values for each position.

The LANai reports the best K valid matches in the Hit-Report, which is sent [Arch1] to the host, or [Arch2] to the next node (with the Match-Task).
The Computation

\[S_{i,j} = \sum_{a=0}^{31} \sum_{b=0}^{31} B_{a,b} M_{a+i,b+j} \]

\[\Theta_{i,j} = \left(\frac{S_{i,j}}{B_{\text{count}}} \right) - \text{Bias} \]

\[BS_{i,j} = \sum_{a=0}^{31} \sum_{b=0}^{31} B_{a,b} \left(M_{a+i,b+j} \geq \Theta_{i,j} \right) \]

\[DS_{i,j} = \sum_{a=0}^{31} \sum_{b=0}^{31} D_{a,b} \left(M_{a+i,b+j} < \Theta_{i,j} \right) \]
The Constraints

A hit is valid if it satisfies:

\[\Theta_{i,j} < \Theta_{\text{max}} \]
\[\Theta_{i,j} > \Theta_{\text{min}} \]
\[BS_{i,j} > BS_{\text{min}} \]
\[DS_{i,j} > DS_{\text{min}} \]
Example-1

Images of size 6x6: $M_{i,j}$ for $i=\{0-5\}, j=\{0-5\}$
Templates of 3x3: $B_{i,j}$ for $i=\{0-2\}, j=\{0-2\}$
Search area 4x4: $Q_{i,j}$ for $i=\{0-3\}, j=\{0-3\}$

Myricom, ATR/SLD, ACS PI mtg, Nov-97, 16
Example-2

\[Q(i,j) = \sum_{a=0}^{2} \sum_{b=0}^{2} B(a,b) \times M(a+i,b+j) \]

\[Q_{i,j} = B00M(i, j) + B01M(i, j+1) + B02M(i, j+2) + \
 B10M(i+1, j) + B11M(i+1, j+1) + B21M(i+1, j+2) + \
 B20M(i+2, j) + B21M(i+2, j+1) + B22M(i+2, j+2) \]

\(Q_{i,j} \) is computed by the unit \(U_j \) for \(j=\{0-3\} \).

4 parallel units.
Example-3

\[U0: q00 = B00*M00 + B01*M01 + B02*M02 + B10*M10 + B11*M11 + B12*M12 + B20*M20 + B21*M21 + B22*M22 \]
\[U1: q01 = B00*M01 + B01*M02 + B02*M03 + B10*M11 + B11*M12 + B12*M13 + B20*M21 + B21*M22 + B22*M23 \]
\[U2: q02 = B00*M02 + B01*M03 + B02*M04 + B10*M12 + B11*M13 + B12*M14 + B20*M22 + B21*M23 + B22*M24 \]

Example-3

<table>
<thead>
<tr>
<th>t=0</th>
<th>t=1</th>
<th>t=2</th>
<th>t=3</th>
<th>t=4</th>
<th>t=5</th>
<th>t=6</th>
<th>t=7</th>
<th>t=8</th>
</tr>
</thead>
<tbody>
<tr>
<td>B00</td>
<td>B01</td>
<td>B02</td>
<td>B10</td>
<td>B11</td>
<td>B12</td>
<td>B20</td>
<td>B21</td>
<td>B22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U3:</th>
<th>M03</th>
<th>M04</th>
<th>M05</th>
<th>M13</th>
<th>M14</th>
<th>M15</th>
<th>M23</th>
<th>M24</th>
<th>M25</th>
</tr>
</thead>
<tbody>
<tr>
<td>U2:</td>
<td>M02</td>
<td>M03</td>
<td>M04</td>
<td>M12</td>
<td>M13</td>
<td>M14</td>
<td>M22</td>
<td>M23</td>
<td>M24</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>U1:</td>
<td>M01</td>
<td>M02</td>
<td>M03</td>
<td>M11</td>
<td>M12</td>
<td>M13</td>
<td>M21</td>
<td>M22</td>
<td>M23</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>U0:</td>
<td>M00</td>
<td>M01</td>
<td>M02</td>
<td>M10</td>
<td>M11</td>
<td>M12</td>
<td>M20</td>
<td>M21</td>
<td>M22</td>
</tr>
</tbody>
</table>

\[Q_{i,j} \] is computed with: \(i \) in-time (sequentially) \(j \) in-place (in parallel)

Myricom, ATR/SLD, ACS PI mtg, Nov-97, 18
Example-4

Pixel (1Byte) pipeline

Myricom, ATR/SLD, ACS PI mtg, Nov-97, 19
Example-5

4B pipeline

Myricom, ATR/SLD, ACS PI mtg, Nov-97, 20
U_j: Computing $S_{i,j}$

$$S_{i,j} = \sum_{a=0}^{31} \sum_{b=0}^{31} B_{a,b} \cdot M_{a+i, b+j}$$
U_j: Computing $BS_{i,j}$

$$BS_{i,j} = \sum_{a=0}^{31} \sum_{b=0}^{31} B_{a,b} \left(M_{a+i,b+j} \geq \Theta_{i,j} \right)$$
U_j: Computing $DS_{i,j}$

$$DS_{i,j} = \sum_{a=0}^{31} \sum_{b=0}^{31} D_{a,b} \ (M_{a+i,b+j} < \Theta_{i,j})$$

![Diagram showing the computation of $DS_{i,j}$]
Three Computing Stages

\[S_{i,j} \]

\[B_{a,b} \]

\[M_{a+i,b+j} \]

\[8 \text{ bits} \]

\[16 \text{ bits} \]

Result

\[BS_{i,j} \]

\[B_{a,b} \]

\[M_{a+i,b+j} \]

\[c \]

\[\Theta_{i,j} \]

\[8 \text{ bits} \]

\[8 \text{ bits} \]

\[8 \text{ bits} \]

Result

\[DS_{i,j} \]

\[D_{a,b} \]

\[M_{a+i,b+j} \]

\[c \]

\[\Theta_{i,j} \]

\[8 \text{ bits} \]

\[8 \text{ bits} \]

\[8 \text{ bits} \]

Result

Lots of reconfiguration opportunities!!
One Computing Configuration

D_{a,b} \quad B_{a,b} \quad M_{a+i,b+j}

\text{counter} \quad 8 \text{ bits} \quad \text{counter} \quad 8 \text{ bits} \quad 8 \text{ bits}

\text{Result} \quad \text{Result} \quad \text{Result}

D_{S_{i,j}} \quad B_{S_{i,j}} \quad S_{i,j}

Myricom, ATR/SLD, ACS PI mtg, Nov-97, 25
Two Computing Phases

Phase-1 computes the 16bit $S_{i,j}$.
Phase-2 computes $BS_{i,j}$ and $DS_{i,j}$, each of 8bits.

The 16 bits results of each phase are returned over the fast pipeline.

The pipeline could convert the $S_{i,j}$ into $\Theta_{i,j} = (S_{i,j}/B_{\text{count}}) - \text{Bias}$.
Additional Optimizations

Track actual size of each template
Transpose tall templates into wide ones
Identify 0-rows of templates/ images
Early-outs (on Θ values)
Sensor

A T R

Display

Front Panel:
- 20 cards/subrack
- 16 Pcard/subrack
- 1 P/Pcard
- 700 (Match/s)/P
- 11,200 Match/s

Myricom, ATR/SLD, ACS PI mtg, Nov-97, 28
LANai SRAM User’s system EM

S

6U-VME card
4 ORCA nodes
2 Myri-links, front
2 Myri-links, back

Each L4-node:
1,300-1,600 matches/sec

~6,000 match/card

Myricom, ATR/SLD, ACS PI mtg, Nov-97, 29
Performance

Without optimizations:
32*32*21*2 = 43,008 op/match, overhead ~5K
40M(op/s) / 48K(op/match) = 833 (match/s)
So simulated, and so measured.

With optimizations (but division by LANai):
1,300-1,600 (match/s) measured.

With division by FPGA: expecting 2,000 match/s
Front Panel:
20 cards/subrack
16 Pcard/subrack
4 P/Pcard
1,500 (Match/s)/P
96,000 Match/s

Back Panel (P0):
20 cards/subrack
20 Pcard/subrack
4 P/Pcard
1,500 (Match/s)/P
120,000 Match/s
Conclusion

To achieve high performance, use:
• Proper System Architecture
• Proper Decomposition HW+SW
• Dense Packaging
• Short inter-Reg path for fast clock
• High Parallelism
• Adapt to Dynamic Variances
• Every Cycle Counts
• Minimize Reconfiguration