Publications
E-cigarette surveillance with social media data: social bots, emerging topics, and trends
Abstract
Background: As e-cigarette use rapidly increases in popularity, data from online social systems (Twitter, Instagram, Google Web Search) can be used to capture and describe the social and environmental context in which individuals use, perceive, and are marketed this tobacco product. Social media data may serve as a massive focus group where people organically discuss e-cigarettes unprimed by a researcher, without instrument bias, captured in near real time and at low costs.
Objective: This study documents e-cigarette–related discussions on Twitter, describing themes of conversations and locations where Twitter users often discuss e-cigarettes, to identify priority areas for e-cigarette education campaigns. Additionally, this study demonstrates the importance of distinguishing between social bots and human users when attempting to understand public health–related behaviors and attitudes.
Methods: E-cigarette–related posts on Twitter (N= 6,185,153) were collected from December 24, 2016, to April 21, 2017. Techniques drawn from network science were used to determine discussions of e-cigarettes by describing which hashtags co-occur (concept clusters) in a Twitter network. Posts and metadata were used to describe where geographically e-cigarette–related discussions in the United States occurred. Machine learning models were used to distinguish between Twitter posts reflecting attitudes and behaviors of genuine human users from those of social bots. Odds ratios were computed from 2x2 contingency tables to detect if hashtags varied by source (social bot vs human user) using the Fisher exact test to determine statistical significance …
- Date
- December 20, 2017
- Authors
- Jon-Patrick Allem, Emilio Ferrara, Sree Priyanka Uppu, Tess Boley Cruz, Jennifer B Unger
- Journal
- JMIR public health and surveillance
- Volume
- 3
- Issue
- 4
- Pages
- e8641
- Publisher
- JMIR Publications Inc., Toronto, Canada