Publications
Decision making in monopoly using a hybrid deep reinforcement learning approach
Abstract
Learning to adapt and make real-time informed decisions in a dynamic and complex environment is a challenging problem. Monopoly is a popular strategic board game that requires players to make multiple decisions during the game. Decision-making in Monopoly involves many real-world elements such as strategizing, luck, and modeling of opponent’s policies. In this paper, we present novel representations for the state and action space for the full version of Monopoly and define an improved reward function. Using these, we show that our deep reinforcement learning agent can learn winning strategies for Monopoly against different fixed-policy agents. In Monopoly, players can take multiple actions even if it is not their. turn to roll the dice. Some of these actions occur more frequently than others, resulting in a skewed distribution that adversely affects the performance of the learning agent. To tackle the non …
- Date
- May 16, 2022
- Authors
- Trevor Bonjour, Marina Haliem, Aala Alsalem, Shilpa Thomas, Hongyu Li, Vaneet Aggarwal, Mayank Kejriwal, Bharat Bhargava
- Journal
- IEEE Transactions on Emerging Topics in Computational Intelligence
- Volume
- 6
- Issue
- 6
- Pages
- 1335-1344
- Publisher
- IEEE