Publications

On detecting urgency in short crisis messages using minimal supervision and transfer learning

Abstract

Humanitarian disasters have been on the rise in recent years due to the effects of climate change and socio-political situations such as the refugee crisis. Technology can be used to best mobilize resources such as food and water in the event of a natural disaster, by semi-automatically flagging tweets and short messages as indicating an urgent need. The problem is challenging not just because of the sparseness of data in the immediate aftermath of a disaster, but because of the varying characteristics of disasters in developing countries (making it difficult to train just one system) and the noise and quirks in social media. In this paper, we present a robust, low-supervision social media urgency system that adapts to arbitrary crises by leveraging both labeled and unlabeled data in an ensemble setting. The system is also able to adapt to new crises where an unlabeled background corpus may not be available …

Date
January 1, 1970
Authors
Mayank Kejriwal, Peilin Zhou
Journal
Social Network Analysis and Mining
Volume
10
Issue
1
Pages
58
Publisher
Springer Vienna