Publications
Assessing scientific research papers with knowledge graphs
Abstract
In recent decades, the growing scale of scientific research has led to numerous novel findings. Reproducing these findings is the foundation of future research. However, due to the complexity of experiments, manually assessing scientific research is laborious and time-intensive, especially in social and behavioral sciences. Although increasing reproducibility studies have garnered increased attention in the research community, there is still a lack of systematic ways for evaluating scientific research at scale. In this paper, we propose a novel approach towards automatically assessing scientific publications by constructing a knowledge graph (KG) that captures a holistic view of the research contributions. Specifically, during the KG construction, we combine information from two different perspectives: micro-level features that capture knowledge from published articles such as sample sizes, effect sizes, and …
- Date
- July 6, 2022
- Authors
- Kexuan Sun, Zhiqiang Qiu, Abel Salinas, Yuzhong Huang, Dong-Ho Lee, Daniel Benjamin, Fred Morstatter, Xiang Ren, Kristina Lerman, Jay Pujara
- Book
- Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval
- Pages
- 2467-2472