Publications

A framework for quantitative analysis of cascades on networks

Abstract

How does information flow in online social networks? How does the structure and size of the information cascade evolve in time? How can we efficiently mine the information contained in cascade dynamics? We approach these questions empirically and present an efficient and scalable mathematical framework for quantitative analysis of cascades on networks. We define a cascade generating function that captures the details of the microscopic dynamics of the cascades. We show that this function can also be used to compute the macroscopic properties of cascades, such as their size, spread, diameter, number of paths, and average path length. We present an algorithm to efficiently compute cascade generating function and demonstrate that while significantly compressing information within a cascade, it nevertheless allows us to accurately reconstruct its structure. We use this framework to study information …

Date
February 9, 2011
Authors
Rumi Ghosh, Kristina Lerman
Book
Proceedings of the fourth ACM international conference on Web search and data mining
Pages
665-674