Publications

Multimodal physical activity recognition by fusing temporal and cepstral information

Abstract

A physical activity (PA) recognition algorithm for a wearable wireless sensor network using both ambulatory electrocardiogram (ECG) and accelerometer signals is proposed. First, in the time domain, the cardiac activity mean and the motion artifact noise of the ECG signal are modeled by a Hermite polynomial expansion and principal component analysis, respectively. A set of time domain accelerometer features is also extracted. A support vector machine (SVM) is employed for supervised classification using these time domain features. Second, motivated by their potential for handling convolutional noise, cepstral features extracted from ECG and accelerometer signals based on a frame level analysis are modeled using Gaussian mixture models (GMMs). Third, to reduce the dimension of the tri-axial accelerometer cepstral features which are concatenated and fused at the feature level, heteroscedastic linear …

Date
August 9, 2010
Authors
Ming Li, Viktor Rozgić, Gautam Thatte, Sangwon Lee, Adar Emken, Murali Annavaram, Urbashi Mitra, Donna Spruijt-Metz, Shrikanth Narayanan
Journal
IEEE Transactions on Neural Systems and Rehabilitation Engineering
Volume
18
Issue
4
Pages
369-380
Publisher
IEEE