Publications

Samba: Identifying inappropriate videos for young children on YouTube

Abstract

YouTube videos are one of the most effective platforms for disseminating creative material and ideas, and they appeal to a diverse audience. Along with adults and older children, young children are avid consumers of YouTube materials. Children often lack means to evaluate if a given content is appropriate for their age, and parents have very limited options to enforce content restrictions on YouTube. Young children can thus become exposed to inappropriate content, such as violent, scary or disturbing videos on YouTube. Previous studies demonstrated that YouTube videos can be classified into appropriate or inappropriate for young viewers using video metadata, such as video thumbnails, title, comments, etc. Metadata-based approaches achieve high accuracy, but still have significant misclassifications, due to the reliability of input features. In this paper, we propose a fusion model, called Samba, which uses …

Date
October 17, 2022
Authors
Le Binh, Rajat Tandon, Chingis Oinar, Jeffrey Liu, Uma Durairaj, Jiani Guo, Spencer Zahabizadeh, Sanjana Ilango, Jeremy Tang, Fred Morstatter, Simon Woo, Jelena Mirkovic
Book
Proceedings of the 31st ACM International Conference on Information & Knowledge Management
Pages
88-97