Seminars and Events

ISI Natural Language Seminar

NL Seminar-Harnessing Black-Box Control to Boost Commonsense in LM’s Generation

Event Details

Speaker: Yufei Tian, UCLA

Conference Rm Location: ISI-MDR #689 in-person attendance will be permitted for USC/ISI faculty, staff, students only. Open to the public virtually via Zoom

REMINDER:

If you do not have access to the 6th Floor, please check in at the main reception desk on 10th floor and someone will escort you to the conference room location prior to the start of the talk.

Meeting hosts only admit guests that they know to the Zoom meeting. Hence, you’re highly encouraged to use your USC account to sign into Zoom.

If you’re an outside visitor, please provide your: Full Name, Title and Name of Workplace to (nlg-seminar-host(at)isi.edu) beforehand so we’ll be aware of your attendance. Also, let us know if you plan to attend in-person or virtually.

For more information on the NL Seminar series and upcoming talks, please visit:

https://nlg.isi.edu/nl-seminar/

Hosts: Jon May and Justin Cho

Large language models like Alpaca and GPT-3 generate coherent texts but sometimes lack commonsense, yet improving their commonsense via fine-tuning is resource expensive in terms of both data and computation. In this talk, I’ll present BOOST, a resource-efficient framework that steers a frozen Pre-Trained Language Model (PTLM) towards more reasonable outputs. This involves creating an interpretable and reference-free evaluator that assigns a sentence with a commonsensical score which grounds the sentence to a dynamic commonsense knowledge base. Using this evaluator as a guide, we extend the NADO controllable generation method to train an auxiliary head that improves the PTLM’s output. Our framework was tested on various language models, including GPT-2, Flan-T5, and Alpaca-based models. On two constrained concept-to-sentence benchmarks, human evaluation results show that BOOST consistently generates the most commonsensical content. Finally, I will demonstrate how ChatGPT outputs are different from and sometimes less favored than our outputs.

Speaker Bio

Yufei Tian is a CS PhD student at UCLA advised by Prof. Nanyun (Violet) Peng. Her research is centered around creative and controllable text generation, machine reasoning and its interaction with cognitive science, as well as designing evaluation metrics for open-ended NLG tasks. She is supported by the UCLA-Amazon fellowship program.

If speaker approves to be recorded for this NL Seminar talk, it will be posted on our USC/ISI YouTube page within 1-2 business days: https://www.youtube.com/user/USCISI.

Subscribe here to learn more about upcoming seminars: https://www.isi.edu/events/